MATH2050C Selected Solution to Assignment 1

Section 2.1. no 3, 9, 10, 16, 17, 23. Section 2.4. no 1, 2, 5, 8, 9, 10, 13, 14.

Section 2.1.

(2) Prove (a) -(a+b) = -a-b. Solution. (a+b)-a-b = (a+b-a)-b = (a-a+b)-b = (0+b)-b = b-b = 0 by A2, A1, A3, A4. Hence -a-b is the additive inverse to (a+b), that is, -(a+b) = -a-b. Note: There could be other proofs.

(3) (b) Solve $x^2 = x$. Solution. $x^2 = x$, implies $x^2 - x = x - x = 0$, implies x(x - 1) = 0, implies x = 0, or x - 1 = 0, that is, x = 0 or x = 1.

(5) Prove 1/(ab) = 1/a1/b for $a, b \neq 0$. Solution. (ab)1/a1/b = (ab)1/b1/a) = (ab1/b)1/a = (a1)1/a = a1/a = 1 by M1, M2, M3.

(9) Show that $\mathbb{Q}(\sqrt{2})$ is a field. **Solution.** The multiplicative inverse of $x = p/q + \sqrt{2}m/n$ is given by $(p/q - \sqrt{2}m/n)/((p/q)^2 - 2(m/n)^2)$. Using the fact that $\sqrt{2}$ is irrational, the denominator never vanishes.

(10) (b) Prove that if 0 < a < b, and $0 \le c \le d$, then $0 \le ac \le bd$. Solution. Sine $c \ge 0$, $0 \le ac \le bc$. As $0 \le c \le d$ and b > 0, $bc \le bd$, so $0 \le ac \le bc \le bd$, that is, $0 \le ac \le bd$.

(16) (c) Solve 1/x < x. Solution. Implicitly it presumes $x \neq 0$. First, if x > 0, 1/x < x implies 1/xx < xx, that is, $1 < x^2$ and $x^2 - 1 > 0$. It means (x + 1)(x - 1) > 0. As x > 0, we conclude x > 1. Next, if x < 0, 1/x < x implies 1/xx > xx, that is, $1 > x^2$ or $x^2 - 1 < 0$. From (x + 1)(x - 1) < 0 and x < 0 we conclude -1 < x < 0. Conclusion: The solution of 1/x < x is given by x > 1 or -1 < x < 0.

(13) Show that $a^2 + b^2 = 0$ if and only of a = b = 0 in S. Proof: For a, b in an ordered field $S, x^2 > 0$ for any $x \neq 0$ by Proposition 1.4(a). Also $x^2 \ge 0$ for all x. Hence if $a \neq 0$, then $a^2 + b^2 \ge a^2 > 0$. Similarly, if $b \neq 0, a^2 + b^2 \ge b^2 > 0$. Hence $a^2 + b^2 = 0$ forces a = b = 0.

(23) For a, b > 0, show that a < b iff $a^n < b^n$ for some $n \in \mathbb{N}$. Solution. Use induction on n. The conclusion is trivial when n = 1. Assume the proposition is true for n = k. We have $a^{k+1} = aa^k < ab^k$ (induction hypothesis). As a < b, $ab^k < bb^k = b^{k+1}$, so $a^{k+1} < ab^k < b^{k+1}$, the proposition holds for n = k + 1. The desired conclusion follows.

Section 2.4.

(2) Let $S = \{x = 1/n - 1/m : n, m \in \mathbb{N}\}$. Find $\inf S$ and $\sup S$. Solution. For all $n, m, 1/n - 1/m > -1/m \ge -1$, so $-1 \le x$ for all $x \in S$. Moreover, if $\varepsilon > 0$, there is $n \in \mathbb{N}$ such that $n > 1/\varepsilon$ and hence $1/n - 1/1 < -1 + \varepsilon$. Therefore $\inf S = -1$. Similarly, we can show that $\sup S = 1$.

(8) Let f, g be bounded real-valued functions on X. Show that $\sup\{f(x) + g(x) : x \in X\} \le \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}$. Solution. For each $x \in X, f(x) \le \sup\{f(z) : z \in X\}$

and $g(x) \leq \sup\{g(z) : z \in X\}$ and so $f(x) + g(x) \leq \sup\{f(z) : z \in X\} + \sup\{g(z) : z \in X\}$. Taking sup over x, we conclude $\sup\{f(x) + g(x) : x \in X\} \leq \sup\{f(x) : x \in X\} + \sup\{g(x) : x \in X\}$ after replacing z by x on the right.

(9) Solution. We have $\inf_x \sup_y h(x, y) = \sup_y \inf_x x = -1$.

(10) **Solution.** We have $\sup_y h(x, y) = 1$, $\inf_x \sup_y h(x, y) = 1$. On the other hand, $\inf_x h(x, y) = 0$, $\sup_y \inf_x h(x, y) = 0$. They are not equal. This exercise tells you that some limits may not be exchangeable.

(14) For y > 0, there is some $n \in \mathbb{N}$ such that $0 < 1/2^n < y$. Solution. Use induction we prove $n \leq 2^n$. By Archimedean Principle, for x > 0, there is some n such that x < n. Taking x = 1/y > 0, $1/y < n < 2^n$, that is, $0 < 1/2^n < y$.

Supplementary Problems

You may use (A1)-(A4), (M1)-(M4), (D), and (O1)-(O3) in the following problems. (1) Prove for $m, n, p, q \in \mathbb{N}, p, q \neq 0$,

$$\frac{n}{m} + \frac{p}{q} = \frac{nq + mp}{mq}$$

Solution. By (M4) and (D),

$$\frac{n}{m} + \frac{p}{q} = \frac{nq}{mq} + \frac{pm}{qm} = \frac{nq + mp}{mq} \; .$$

(2) Prove ab > 0 implies a, b > 0 or a, b < 0.

Solution. In case a = 0 or b = 0, ab = 0, so we must have $a, b \neq 0$. If a > 0, b < 0, then a > 0, -b > 0 by (O3) and -ab = a(-b) > 0 by (O2). By (O1) again, ab < 0. Hence a > 0, b < 0 is excluded. By symmetry, a < 0, b > 0 is also excluded.

(3) Prove
$$2ab \le a^2 + b^2$$
.

Solution. First we claim $x^2 > 0$ for $x \neq 0$. When x > 0, it follows from (O2). When x < 0, (-x)(x-x) = (-x)0 = 0 implies $-x^2 + (-x)^2 = 0$, that is, $x^2 = (-x)^2 > 0$. Assume $a \neq b$. Letting x = a - b, $(a - b)^2 > 0$ which is just $a^2 + b^2 > 2ab$. When a = b, $a^2 + b^2 = 2ab$. We conclude equality holds in this inequality iff a = b.

(5) Let p be a prime number. Show that \mathbb{Z}_p is a field but it does not admit an ordering satisfying (O1)-(O3).

Solution. We define a + b and ab by modulo p. For $a \in \mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$, the additive inverse of a is p - a (so that $a + (p - a) = p \equiv 0$). We claim for $a \in \mathbb{Z}_p$, there is some $b \in \mathbb{Z}_p$ such that $ab \equiv 1$. For, consider the set $\{0, a, 2a, \dots, (p-1)a\}$. After taking modulo p, this set consists of p many elements and they are all distinct (because p is prime). Therefore, it is equal to $\{0, 1, 2, \dots, p-1\}$, so there must exist a unique b such that $ba \equiv 1$, that is, b is the multiplicative inverse of a.

However, \mathbb{Z}_p is not an ordered field. For, adding 1 p many times $1 + \cdots + 1 = p \equiv 0$. If it is ordered, we have p > 0 by Proposition 1.4(c).

(6) Is \mathbb{C} an ordered field?

Solution. NO. Suppose it admits an ordering <. By Proposition 1.4(a), $i^2 > 0$. But then it means -1 > 0 or 1 < 0, contradicting Proposition 1.4(a) $1^2 = 1 > 0$.